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ABSTRACT. Digital holography allows for the recording and reconstruction of three-dimensional

images using interference and diffraction principles. The propagation of light from

the hologram plane to the reconstruction plane is a crucial step, often achieved

through Fresnel propagation, a method that inherently transforms the reconstructed

pixel pitch to provide diffraction-limited imaging. However, the accuracy of this

method is limited by the Fresnel approximation, especially in applications such

as digital holographic microscopy. We present a simple method that significantly

improves the accuracy of the Fresnel approximation by incorporating higher orders

of the binomial approximation. We validate the effectiveness of our approach

through high numerical aperture simulations and experimental results, demonstrat-

ing superior sub-micron resolution and reduced distortions compared with standard

Fresnel propagation.
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1 Introduction

Digital holography is a powerful technique that enables the recording and reconstruction of three-

dimensional (3D) images. By leveraging principles of interference and diffraction, digital holog-

raphy enables the recording and storage of both amplitude and phase information of light waves

scattered from objects.1,2 This approach not only eliminates the need for complex optical com-

ponents but also offers unique advantages such as enhanced depth of focus, volumetric imaging,

and precise determination of optical paths at the nanometer scale.3 Digital holography finds

applications across various fields, such as metrology,4–6 biomedical imaging,7,8 or holographic

displays.9–12 Another notable application is lensless holographic microscopy.13,14

Due to advancements in image sensor technology as well as improvements in computing

power and reconstruction algorithms, lensless holographic microscopy has emerged as a com-

pelling alternative to lens-based microscopy.15 Because it forgoes expensive and heavy micro-

scope objectives, lensless microscopy methods may provide a cost-effective and field-portable

means to achieve depth-resolved 3D imaging.16,17 However, it is widely believed that the spatial

resolution of lensless holographic microscopes is limited by the pixel pitch of the camera

sensor.18,19 Several reconstruction algorithms containing an adjustable magnification along vary-

ing pixel grids have been proposed,20 scaling the reconstruction either to image objects larger

than the sensor21 or magnifying the reconstruction of objects containing features smaller than the
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sensors pixel pitch. Their applicability for lensless microscopy is, however, often limited by

approximations, implicitly assuming small numerical apertures.22

This limitation is generally overcome through laborious pixel super-resolution

techniques23,24 to synthesize a larger and higher resolved hologram.25 This is generally done

by recording multiple holograms and scanning either by shifting the camera sensor,26,27

object,28,29 or illumination30,31 or by placing a diffraction grating between sample and

camera.32,33 However, these techniques generally impose strict limitations on the measurement

of transient processes as multiple measurements must be taken sequentially.

One other potential solution for reconstructing holograms measured along a large sized sen-

sor grid onto a higher resolved grid in the object plane is the Fresnel propagation,34,35 a method

for calculating the propagation of light in homogeneous media that has been widely employed in

digital holography due to its simplicity and efficiency. It only requires a single Fourier transform

to calculate the wavefront at a desired distance from the hologram plane. Yet, the main advantage

of Fresnel propagation, compared with other methods such as plane wave decomposition, is that

it accommodates different sampling schemes for the hologram plane and the reconstruction

plane.2 In discrete implementation in particular, this ensures transformation from a sampling

lattice with pixel pitch Δx in the hologram plane to a sampling lattice with pixel pitch

EQ-TARGET;temp:intralink-;e001;114;532Δu ¼ λz∕L; (1)

in the object plane, where λ; z, and L are the wavelength, propagation distance, and size of the

hologram plane, respectively. The scaling by the factor of λz∕L ≈ λ∕2 NA corresponds conven-

iently to the diffraction limited optical resolution δ ¼ λ∕2 NA achievable with the propagation

process, which therefore prevents the calculation of unnecessary data (oversampling). This

means a substantial benefit, especially in applications such as digital holographic microscopy,

in which the aimed optical resolution in the object plane is typically in the single micrometer

range or even below while the pixel pitch of the camera can be one order of magnitude larger.

However, despite its usefulness, Fresnel propagation is subject to certain limitations. A

major drawback is its reliance on the Fresnel approximation,36 which assumes small numerical

apertures. This limitation restricts its applicability, particularly in microscopy scenarios, to

NA < 0.1. Here, we present a simple solution to overcome this problem and improve the accu-

racy of the Fresnel approximation. The idea is to incorporate higher orders of the binomial

approximation of the square root. We show in both simulations and experiments that this

improves the approximation substantially, so that the Fresnel approximation can be applied even

in situations in which NA ≈ 0.5 holds. Furthermore, the method does not require any additional

computational effort and can be easily implemented into already existing propagation algorithms

and routines.

2 Methods

2.1 Locally Improved Fresnel Approximation
The starting point of our discussion is the Rayleigh-Sommerfeld diffraction equation. Within the

scalar diffraction theory, it provides an exact description of light propagation from an object

plane u; v into a hologram plane x; y:37

EQ-TARGET;temp:intralink-;e002;114;221UHðx; yÞ ¼ −
1

2π

Z

UOðu; vÞ ·
expðikrÞ

r
·
z

r
·

�

ik −
1

r

�

dudv: (2)

Here, UHðu; vÞ and UOðx; yÞ are the complex amplitudes of the wave field across the holo-

gram plane and the object plane, respectively; z is the propagation distance; and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − uÞ2 þ ðy − vÞ2 þ z2
p

is the distance between two points in the hologram plane and

the object plane. The Fresnel approximations assume r ≈ z outside the exponentials, ik − 1∕r ≈

ik and a first order binomial approximation of r within the exponentials

EQ-TARGET;temp:intralink-;e003;114;121r ≈ zþ
1

2z
½ðx − uÞ2 þ ðy − vÞ2�: (3)

With the Fresnel approximations in place, it is straightforward to reformulate Eq. (2) into a

single Fourier transform to obtain the Fresnel propagation equation:36
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EQ-TARGET;temp:intralink-;e004;117;736UHðx; yÞ ¼ −
i

λz
S1ðx; yÞ · FfUOðu; vÞ · S2ðu; vÞg

�

x

λz
;
y

λz

�

; (4)

with the Fourier transform operator F and two parabolic phase functions

EQ-TARGET;temp:intralink-;e005;117;693S1ðx; yÞ ¼ exp

�

ikðx2 þ y2Þ

2z
þ ikz

�

and S2ðu; vÞ ¼ exp

�

ikðu2 þ v2Þ

2z

�

: (5)

The main idea now is to improve the approximation of r within the exponentials by incor-

porating additional terms of the binomial approximation. For this, we recall the binomial series

EQ-TARGET;temp:intralink-;e006;117;630ð1þ bÞ1∕2 ¼
X

∞

K¼0

�

1∕2

K

�

· bK ¼ 1þ
1

2
b −

1

8
b2 þ

1

16
b3− · · · (6)

Before we insert r, we have to bring it into a convenient form and reformulate

EQ-TARGET;temp:intralink-;e007;117;577r ¼ ½ðx − uÞ2 þ ðy − vÞ2 þ z2�1∕2 ¼ z · ð1þ bÞ1∕2; (7)

with

EQ-TARGET;temp:intralink-;e008;117;541b ¼
r2xy

z2
þ

r2uv

z2
−
2xu

z2
−
2yv

z2
; (8)

and r2xy ¼ x2 þ y2 as well as r2uv ¼ u2 þ v2. With this prerequisite, we apply Eq. (6) with n ¼

1∕2 to Eq. (7) and yield

EQ-TARGET;temp:intralink-;e009;117;479r ¼ z ·
X

∞

K¼0

�

1∕2

K

�

· bK ¼ zþ
r2xy

2z
þ

r2uv

2z
−
xu

z
−
yv

z
þ z ·

X

∞

K¼2

�

1∕2

K

�

· bK: (9)

In the last step of Eq. (9), we explicitly wrote down the first two summands, corresponding

to K ¼ 0 and K ¼ 1. Please note that they are identical to the approximation of Eq. (3). We can

now further separate the higher summands for K > 1 into terms that purely depend on either the

coordinates of the reconstruction plane, x and y, or on the coordinates of the hologram plane, u

and v, and yield
EQ-TARGET;temp:intralink-;e010;117;377

r ¼ zþ
r2xy

2z
þ

r2uv

2z
−
xu

z
−
yv

z
þ z ·

X

∞

K¼2

�

1∕2

K

��

r2xy

z2

�

K

þ z ·
X

∞

K¼2

�

1∕2

K

��

r2uv

z2

�

K

þ z ·
X

∞

K¼2

MðKÞ: (10)

The last sum contains all of the mixed terms MðKÞ, which are cross-terms of x; y and u; v.

Looking at the definition of the binomial series, we realize that we can rewrite Eq. (10) as

EQ-TARGET;temp:intralink-;e011;117;279r ¼ −zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2xy þ z2
q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2uv þ z2
q

−
xu

z
−
yv

z
þ z ·

X

∞

K¼2

MðKÞ: (11)

An important requirement of the Fresnel propagation Eq. (4) is the separability of the holo-

gram plane under the integral and the reconstruction plane outside the integral. The only excep-

tion are the first order cross-terms x · u and y · v, which provide the Fourier transform. Hence, to

still ensure separability of the hologram and reconstruction planes, we cannot consider any

higher order cross-terms and finally arrive at the approximation

EQ-TARGET;temp:intralink-;e012;117;178r ≈ −zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2xy þ z2
q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2uv þ z2
q

−
xu

z
−
yv

z
: (12)

With this approximation, we preserve the structure of the Fresnel propagation equation

[Eq. (4)] and just have to adapt the parabolic phase functions to

EQ-TARGET;temp:intralink-;e013;117;118S1ðx; yÞ ¼ exp½ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2xy þ z2
q

− ikz� and S2ðu; vÞ ¼ exp½ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2uv þ z2
q

�: (13)

If the Fresnel propagation is used to reconstruct the digital holograms, the propagation oper-

ator in Eq. (4) has to be inverted, and we find
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EQ-TARGET;temp:intralink-;e014;114;736UOðu; vÞ ¼ iλz · S�2ðu; vÞ · F
−1fUHðx; yÞ · S

�
1ðx; yÞg

�

u

λz
;
v

λz

�

; (14)

where positive values of z now have the meaning of a reconstruction distance. The approximation

in Eq. (14) yields similar reconstruction results to the standard Fresnel approximation. However,

in contrast to the Fresnel approximation, the error varies with the radius of the object. This can be

seen from the structure of Eq. (11). The mixed terms MðKÞ vanish completely on the optical

axis, i.e., x ¼ y ¼ 0 or u ¼ v ¼ 0. Hence, in this case, Eq. (14) is not even an approximation but

the exact solution. Consequently, the approximation for surface points close to the optical axis is

very good and gets worse with increasing the radius of the object.

2.2 Combining Multiple Reconstructions
We can leverage the relationship between the reconstruction quality and distance from the optical

axis by combining reconstructions with the optical axis shifted to different lateral positions. Our

improved approximation is exact at x ¼ y ¼ 0 as seen when comparing Eqs. (11) and (12).

Introducing lateral offsets δx and δy to the optical axis, we reformulate the parabolic phase func-

tion accordingly:

EQ-TARGET;temp:intralink-;e015;114;537S1ðx; yÞ ¼ exp½ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − δxÞ2 þ ðy − δyÞ2 þ z2
q

− ikz� : (15)

This adjustment is still exact along the shifted optical axis at x ¼ δx and y ¼ δy. The shift

introduces an additional linear phase term to the reconstruction with tilts θx ¼ arctanðδx∕zÞ and
θy ¼ arctanðδy∕zÞ. This linear phase can, however, be easily compensated. By stitching the areas

of exact reconstruction from multiple propagations with different shifted optical axes, we can

combine them to achieve exact reconstructions across large regions of the object plane.

3 Experimental Setup and Results

In the experimental section, we present both simulated results and experimental results to validate

the effectiveness of our improved Fresnel propagation method. Both the simulations and the

experimental results demonstrate the enhanced quality of hologram reconstruction compared

with the standard Fresnel propagation.

Fig. 1 Typical sampling scheme in lensless microscopy. The hologram plane and the object plane

are separated by a distance z. The pixel pitch Δx in the hologram plane is larger than the pitch

(resolution) Δu in the object plane. The number of pixels N is invariant, and the Fresnel propa-

gation transforms the pixel pitch in accordance with the diffraction limit.
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3.1 Simulative Results
For the initial simulations, we employed a holographic scheme with a plane reference wave and a

Siemens star serving as the object. The simulation parameters include the number of pixels

N ¼ 512, a wavelength of λ ¼ 532 nm, and a numerical aperture of NA ¼ 0.26. The simulated

setup is shown schematically in Fig. 1, where we set the pixel pitch in the sensor plane to Δx ¼
10 μm and Δu ¼ 1 μm in the object plane. Rearranging the scaling in Eq. (1), this demands a

propagation distance of z ¼ ΔxL∕λ ¼ 9.6mm.

To generate an exact hologram, the wave field representing a Siemens star in the object plane

was propagated into the sensor plane by solving the Rayleigh–Sommerfeld diffraction formula

exactly via direct integration. Afterward, the hologram was reconstructed through Fresnel propa-

gation. Figures 2(a) and 2(b) display the reconstructed amplitude using the standard Fresnel

propagation and our improved method, respectively. In addition, Fig. 2(c) shows the recon-

structed phase using the standard Fresnel propagation, and Fig. 2(d) shows the reconstructed

phase using our method. Notably, our method exhibits superior resolution, finer details in the

amplitude, and fewer ripples and distortions in the phase.

As demonstrated in Sec. 2.1 according to Eq. (11), our improved reconstruction method is

exact in the center. Thus, we expect a significantly superior result in the reconstruction of a

Siemens star, which has its highest spatial frequencies in the center when comparing with the

Fig. 2 Reconstructed amplitude and phase of a simulated Siemens star using (a, c) standard

Fresnel propagation and (b, d) our improved method. The standard Fresnel reconstruction shows

clear degradation of the resolution in the center as well as phase-distortions, whereas our

improved reconstruction fully resolves the Siemens star and shows a flat phase distribution except

for degradation in the periphery.
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standard Fresnel propagation. To explore the reconstruction quality in areas far from the optical

axis, we used a different object containing a randomized distribution of dots across the object

plane. The simulation parameters were exactly the same as with the Siemens star. Figure 3(a)

shows the reconstruction of the randomized dot distribution using standard Fresnel propagation;

for Fig. 3(b), our improved method was used. When comparing the center region our improved

method again exhibits superior resolution, better defined points, and a less disturbed background.

However, in the periphery, the size of the reconstructed dots is similar to that of the standard

Fresnel propagation.

To achieve a more precise reconstruction across the whole field of view (FoV), we combined

multiple holographic reconstructions with a laterally shifted optical axis. We shifted the optical

axis laterally to 5 × 5 different locations across the FoV, each separated by 102.4 μm. After com-

pensating for the additional phase tilt, the central, exact parts of the individual reconstructions

were combined into the overall reconstruction shown in Fig. 3(c). Here, we see in the center that

the reconstruction is identical to the improved Fresnel propagation without the optical axis shift.

However, due to the combination of multiple exact reconstructions in different areas, the overall

reconstruction exhibits a superior resolution of the dots across the whole FoV.

For a quantitative comparison between the reconstruction quality of standard Fresnel propa-

gation and our improved method, we calculated the structural similarity index measure (SSIM) of

reconstructions of the “cameraman” test image across varying numerical apertures NA. The

SSIM describes the perceived quality of digital images compared to a reference image; an

SSIM of 1 indicates perfect similarity, and 0 indicates no similarity.38 A typical reconstruction

of the “cameraman” image using 5 × 5 improved reconstructions with NA ¼ 0.3 is shown in

Fig. 4(a) alongside an SSIM map in Fig. 4(b), where dark areas indicate large differences from

the original reference image.

Table 1 shows that our improved method outperforms the standard Fresnel reconstruction for

every numerical aperture. Furthermore, the reconstruction quality can be improved further by

combining multiple reconstructions, especially for larger numerical apertures, i.e., in microscopy

scenarios. It should be noted that the computational effort of our improved method is identical to

that of standard Fresnel propagation, and every additional reconstruction adds one additional 2D

Fourier transformation.

3.2 Experimental Results
The Fresnel propagation alters both the pixel pitch and the FoVof the reconstruction. It is crucial

that the illumination remains within the FoV to ensure proper sampling by the camera and to

prevent aliasing of the Fresnel reconstruction. Because the FoV in microscopy is typically

smaller than the camera target, using plane wave illumination restricted to the FoV would

Fig. 3 Amplitude of holographic reconstruction of a randomized dot distribution using (a) standard

Fresnel propagation, (b) our improved method, and (c) a combination of 5 × 5 reconstruction using

our improved method with laterally shifted optical axes. The improved Fresnel propagation in

(b) shows superior resolution in the center when compared with the standard Fresnel propagation

in (a), whereas in the periphery the dots are less well defined. However, the combined reconstruc-

tion with shifted optical axes in (c) shows a similarly high resolution in the periphery as in the center.
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concentrate most of the recorded light onto a small area of the camera target. To address this issue

and improve the signal-to-noise ratio, we utilize divergent illumination, as illustrated in the sche-

matic representation of the setup in Fig. 5(a). The reference wave is shifted laterally to enable off-

axis holography.

Divergent illumination can be achieved using point sources, such as monomode fibers.

However, conventional monomode fibers offer a numerical aperture of only around 0.1 to

0.2, limiting the illumination of the entire target. To address this, we employ microscope objec-

tives for divergent illumination, as illustrated schematically in Fig. 5(b). It is important to clarify

that “lensless imaging” in this context denotes the absence of lenses between the object and

camera. The microscope objectives are solely for beam shaping, and they could alternatively

be easily substituted, e.g., with tapered fibers featuring higher numerical apertures due to smaller

fiber core diameters.

The experimental setup utilized a helium-neon laser with a wavelength of λ ¼ 632.8 nm as

the light source. Imaging was conducted with a camera featuring dimensions of

5120 × 5120 pixels and a pixel pitch of 2.5 μm. However, the effective sensor length was con-

strained to L ¼ 12.5 mm by the beam splitter. In Fig. 6(a), the measured digital hologram is

shown. Using off-axis holography, the hologram is modulated with high-frequent carrier fringes

shown in the inset, which are used for spatial phase shifting in Fourier space [shown in Fig. 6(b)]

to reconstruct the complex phase.

The object under investigation is a USAF MIL-STD 150A resolution chart placed in differ-

ent distances z ¼ f120; 29; 16g mm from the camera sensor. With a refractive index of the beam

Table 1 SSIM of reconstructions of the “cameraman” test image reconstructed with varying

numerical apertures using standard Fresnel propagation and our improved method using one,

5 × 5, and 9 × 9 reconstructions.

Numerical SSIM for

Aperture Standard Improved Improved Improved

NA Fresnel Fresnel Fresnel 5 × 5 Fresnel 9 × 9

0.1 0.70 0.78 0.81 0.82

0.3 0.31 0.39 0.55 0.64

0.5 0.20 0.26 0.34 0.41

Fig. 4 (a) Amplitude of the reconstruction of the “cameraman” test image with a numerical aperture

of NA ¼ 0.3, combining 5 × 5 reconstructions. (b) SSIM map of the reconstruction, where dark

areas indicate large differences between the reconstruction and the original reference image.
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splitter of n ¼ 1.5, these configurations yielded a numerical aperture of NA ¼ f0.06; 0.26;
0.55g, respectively. Consequently, utilizing Fresnel propagation, this results in a pixel pitch

Δu ¼ f5.8; 1.2; 0.5g μm corresponding approximately to the diffraction limit δ ¼
f5.0; 1.0; 0.4g μm in the object plane. Prior to the measurements, the setup was calibrated using

a reference measurement conducted across an area of the USAF chart without any surface struc-

ture, ensuring accurate measurements.

Figures 7(a)–7(f) show the reconstructions of the recorded holograms for the varying

numerical apertures using the standard Fresnel approximation (a, c, e) as well as our improved

method (b, d, f). To compare the reconstruction quality between different scenarios, we chose a

similar area of the image for each reconstruction. As expected, the reconstructions for both meth-

ods are virtually identical for small numerical apertures, as shown in Figs. 7(a) and 7(b), with

Fig. 6 (a) Digital hologram captured by the camera sensor. Due to the off-axis configuration, the

hologram is modulated with carrier fringes as seen in the inset, which shows the small area

denoted by the red square. (b) Fourier transformation of the hologram, where the signal can

be easily separated from the dc-term for spatial phase shifting.

Fig. 5 (a) Detailed schematic illustration of a proposed lensless holographic setup using diverging

point light sources for the object illumination and the reference wave, superpositioned on the cam-

era sensor with a beam splitter. The lateral offset of the reference point source enables off-axis

holography. (b) Schematic overview of the experimental realization of the holographic setup. A

fiber coupled HeNe laser combined with a fused fiber splitter is used to generate the object illumi-

nation and reference wave. We employ multiple lenses in both the object and reference path for

beam shaping to facilitate high-numerical aperture point source illumination. In addition, the use of

polarizers and a λ∕2-retarder plate ensures maximum contrast of the hologram.
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both reconstruction resolutions being limited by the reconstruction pixel pitch corresponding to

the diffraction limit. However, the improved reconstruction remains approximately diffraction

limited for higher numerical apertures, whereas the standard Fresnel reconstruction increasingly

deteriorates and becomes dominated by imaging errors for high numerical apertures.

Using our improved method at a numerical aperture of NA ¼ 0.55, in Fig. 7(f), we can

clearly resolve the smallest available element of group 9, which indicates an optical resolution

of below 0.8 μm. For reference, the red square in Fig. 7 indicates the size of a 2.5 μm camera

pixel and consequently the potential resolution using alternative propagation methods, such as

the angular spectrum method.

4 Conclusion

We have presented a novel approach to enhance Fresnel propagation in digital holography, over-

coming limitations associated with the traditional Fresnel approximation. By incorporating

Fig. 7 Holographic reconstructions of a USAF MIL-STD 150A resolution chart using (a, c, e) stan-

dard Fresnel propagation and (b, d, f) our improved method for different numerical apertures (a,

b) NA ¼ 0.06, (c, d) NA ¼ 0.26, and (e, f) NA ¼ 0.55. For NA ¼ 0.06 (a, b) both reconstructions are

diffraction limited, (c, e) and the standard Fresnel reconstruction increasingly deteriorates for larger

numerical apertures. Our improved reconstructions remain approximately diffraction limited, where

for NA ¼ 0.55 (f) the smallest available group 9, element 3 with a line width of 780 nm is fully

resolved. For reference, the red square indicates the size of a 2.5 μm camera pixel.
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higher orders of the binomial approximation, our method extends the applicability of

Fresnel propagation to scenarios with larger numerical apertures, thereby significantly improving

the reconstruction accuracy. This advancement holds particular significance for lensless holo-

graphic microscopy. Because the resolution using a single hologram is generally believed to

be limited by the sensor pixel pitch, usually complex scanning schemes are employed to achieved

sub-micron resolution. Leveraging the inherent sampling grid transformation of the Fresnel

propagation, our improved method achieved sub-micron resolution from a single-shot measure-

ment, allowing for more flexibility and adaptability of lensless microscopy toward transient

processes.

Experimental validation demonstrates the effectiveness of our improved Fresnel propagation

method, showcasing its superior reconstruction quality compared with standard Fresnel propa-

gation. The simulations and experimental results highlight finer details, improved resolution, and

reduced artifacts in both amplitude and phase reconstructions. Notably, with a resolution of

below 0.8 μm our method enables the achievement of resolutions significantly below the camera

pixel pitch of 2.5 μm. Our method does not require any additional computational effort compared

with standard Fresnel propagation and can be easily implemented into already existing propa-

gation algorithms and routines, enhancing the accessibility and usability across various fields of

research and applications. Furthermore, to locally improve reconstructions, multiple locally exact

reconstructions can be combined across the whole FoV.
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